Efficient Nonnegative Matrix Factorization via projected Newton method

نویسندگان

  • Pinghua Gong
  • Changshui Zhang
چکیده

Nonnegative Matrix Factorization (NMF) is a popular decomposition technique in pattern analysis, document clustering, image processing and related fields. In this paper, we propose a fast NMF algorithm via Projected Newton Method (PNM). First, we propose PNM to efficiently solve a nonnegative least squares problem, which achieves a quadratic convergence rate under appropriate assumptions. Second, in the framework of an alternating optimization method, we adopt PNM as an essential subroutine to efficiently solve the NMF problem. Moreover, by exploiting the low rank assumption of NMF, we make PNM very suitable for solving NMF efficiently. Empirical studies on both synthetic and real-world (text and image) data demonstrate that PNM is quite efficient to solve NMF compared with several state of the art algorithms. & 2012 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

Nonnegative Matrix Factorization via Newton Iteration for Shared-memory Systems∗

Nonnegative Matrix Factorization (NMF) can be used to approximate a large nonnegative matrix as a product of two smaller nonnegative matrices. This paper shows in detail how an NMF algorithm based on Newton iteration can be derived utilizing the general Karush-KuhnTucker (KKT) conditions for first-order optimality. This algorithm is suited for parallel execution on shared-memory systems. It was...

متن کامل

Fast Nonnegative Matrix Factorization Algorithms Using Projected Gradient Approaches for Large-Scale Problems

Recently, a considerable growth of interest in projected gradient (PG) methods has been observed due to their high efficiency in solving large-scale convex minimization problems subject to linear constraints. Since the minimization problems underlying nonnegative matrix factorization (NMF) of large matrices well matches this class of minimization problems, we investigate and test some recent PG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2012